RSS
Welcome to my blog, hope you enjoy reading :)

Sabtu, 17 Oktober 2009

1. Perkembangan Konsep Asam dan Basa

Mardianto 09028tiumb@gmail.com

Perkembangan Konsep Asam dan Basa

Konsep oksidasi-reduksi
Dalam oksidasi-reduksi, suatu entitas diambil atau diberikan dari dua zat yang bereaksi. Situasinya mirip dengan reaksi asam basa. Singkatnya, reaksi oksidasi-reduksi dan asam basa merupakan pasangan sistem dalam kimia. Reaksi oksidasi reduksi dan asam basa memiliki nasib yang sama, dalam hal keduanya digunakan dalam banyak praktek kimia sebelum reaksi ini dipahami. Konsep penting secara perlahan dikembangkan: misalnya, bilangan oksidasi, oksidan (bahan pengoksidasi), reduktan (bahan pereduksi), dan gaya gerak listrik, persamaan Nernst, hukum Faraday tentang induksi elektromegnet dan elektrolisis. Perkembangan sel elektrik juga sangat penting. Penyusunan komponen reaksi oksidasi-reduksi merupakan praktek yang penting dan memuaskan secara intelektual. Sel dan elektrolisis adalah dua contoh penting, keduanya sangat erat dengan kehidupan sehari-hari dan dalam industri kimia.

a. Penemuan oksigen

Karena udara mengandung oksigen dalam jumlah yang besar, kombinasi antara zat dan oksigen, yakni oksidasi, paling sering berlangsung di alam. Pembakaran dan perkaratan logam pasti telah menatik perhatian orang sejak dulu. Namun, baru di akhir abad ke- 18 kimiawan dapat memahami pembakaran dengan sebenarnya. Pembakaran dapat dipahami hanya ketika oksigen dipahami. Sampai doktrin Aristoteles bahwa udara adalah unsur dan satu-satunya gas ditolak, mekanisme oksidasi belum dipahami dengan benar. Kemungkinan adanya gas selain udara dikenali oleh Helmont sejak awal abad ke-17. Metoda untuk memisahkan gas tak terkontaminasi dengan uap menggunakan pompa pneumatik dilaporkan oleh Hales di sekitar waktu itu. Namun, walau telah ada kemajuan ini, masih ada satu miskonsepsi yang menghambat pemahaman peran oksigen dalam pembakaran. Miskonsepsi ini adalah teori flogiston yang telah disebutkan di Bab 1. Teori ini dinyatakan oleh dua kimiawan Jerman, Georg Ernst Stahl (1660-1734) dan Johann Joachim Becher. Menurut teori ini, pembakaran adalah proses pelepasan flogiston dari zat yang terbakar. Asap yang muncul dari kayu terbakar dianggap bukti yang baik teori ini. Massa abu setelah pembakaran lebih ringan dari massa kayu dan ini juga konsisten dengan teori flogiston. Namun, ada kelemahan utama dalam teori ini. Residu (oksida logam) setelah pembakaran logam lebih berat dari logamnya. Priestley dan Scheele, yang menemukan oksigen di akhir abad ke-18, adalah penganut teori flogiston . Jadi mereka gagal menghayati peran oksigen dalam pembakaran. Sebaliknya, Lavoiseur, yang tidak terlalu mengenali teori ini, dengan benar memahamo peran oksigen dan mengusulkan teori pembakaran baru yakni oksidasi atau kombinasi zat terbakar dengan oksigen.Ia mendukung teroinya dengan percobaan yang akurat dan kuantitatif yang jauh lebih baik dari standar waktu itu. Ia menyadari bahwa penting untuk memperhatikan kuantitas gas yang terlibat dalam reaksi untuk memahami reaksi kimia dengan cara kuantitatif. Jadi ia melakukan reaksinya dalam wadah tertutup. Peran oksigen dalam pembakaran dikenali Lavoiseur; oksidasi-reduksi didefinisikan sebagai beriku.Oksidasi-reduksi dan oksigen Oksidasi: menerima oksigen Reduksi: mendonorkan oksigen.

b. Peran hidrogen

Ternyata tidak semua reaksi oksidasi dengan senyawa organik dapat dijelaskan dengan pemberian dan penerimaan oksigen. Misalnya, walaupun reaksi untuk mensintesis anilin dengan mereaksikan nitrobenzen dan besi dengan kehadiran HCl adalah reaksi oksidasi reduksi dalam kerangka pemberian dan penerimaan oksigen, pembentukan CH3CH3 dengan penambahan hidrogen pada CH2=CH2, tidak melibatkan pemberian dan penerimaan oksigen. Namun, penambahan hidrogen berefek sama dengan pemberian oksigen. Jadi, etena direduksi dalam reaksi ini. Dengan kata lain, juga penting mendefinisikan oksidasi-reduksi dalam kerangka pemberian dan penerimaan hidrogen.

Oksidasi-reduksi dan hidrogen

Oksidasi: mendonorkan hidrogen

Reduksi: menerima hidrogen

b. Peran elektron

Pembakaran magnesium jelas juga reaksi oksidasi-reduksi yang jelas melibatkan pemberian dan penerimaan oksigen.

2Mg + O2 –> 2MgO

Reaksi antara magnesium dan khlorin tidak diikuti dengan pemberian dan penerimaan oksigen.

Mg + Cl2 –> MgCl2

Namun, mempertimbangkan valensi magnesium, merupakan hal yang logis untuk menganggap kedua reaksi dalam kategori yang sama. Memang, perubahan magnesium, Mg –> Mg2++ 2e- , umum untuk kedua reaksi, dan dalam kedua reaksi magnesium dioksidasi. Dalam kerangka ini, keberlakuan yang lebih umum akan dicapai bila oksidasi-reduksi didefinisikan dalam kerangka pemberian dan penerimaan elektron.
Oksidasi-reduksi dan elektron

Oksidasi: mendonorkan elektron

Reduksi: menerima elektron

Bila kita menggunakan definisi ini, reaksi oksidasi-reduksi dapat dibagi menjadi dua, satu adalah reaksi oksidasi, dan satunya reaksi reduksi. Jadi,

Mg –> Mg2+ + 2 e- (mendonorkan elektron –> dioksidasi)

Cl2 + 2e—> 2Cl- (menerima elektron –> direduksi)

Masing-masing reaksi tadi disebut setengah reaksi. Akan ditunjukkan bahwa reaksi oksidasi reduksi biasanya paling mudah dinyatakan dengan setengah reaksi (satu untuk oksidan dan satu untuk reduktan).

d. Oksidan dan reduktan (bahan pengoksidasi dan pereduksi)

Oksidasi reduksi seperti dua sisi dari selembar kertas, jadi tidak mungkin oksidasi atau reduksi berlangsung tanpa disertai lawannya. Bila zat menerima elektron, maka harus ada yang mendonorkan elektron tersebut.

Dalam oksidasi reduksi, senyawa yang menerima elektron dari lawannya disebut oksidan (bahan pengoksidasi sebab lawannya akan teroksidasi. Lawan oksidan, yang mendonorkan elektron pada oksidan, disebut dengan reduktan (bahan pereduksi) karena lawannya (oksidan tadi tereduksi.

Di antara contoh di atas, magnesium, yang memberikan elektron pada khlorin, adalah reduktan, dan khlorin, yang menerima elektron dari magnesium, adalah reduktan. Umumnya, unsur elektropositif seperti logam alkali dan alkali tanah adalah reduktan kuat; sementara unsur elektronegatif seperti khlorin adalah oksidan yang baik.

Suatu senyawa dapat berlaku sebagai oksidan dan juga reduktan. Bila senyawa itu mudah mendonorkan elektron pada lawannya, senyawa ini dapat menjadi reduktan. Sebaliknya bila senyawa ini mudah menerima elektron, senyawa itu adalaj oksidan. Tabel 10.1, mendaftarkan setengah reaksi oksidan dan reduktan yang umum.

Tabel 10.1 Beberapa oksidan dan reduktan

Oksidan

I2(aq) + 2 e-–> 2I-(aq)
Br2(aq) + 2e-–> 2Br-(aq)
Cr2O72-(aq) + 14H+(aq) + 6e-–> 2Cr3+(aq) + 7H2O(l)
Cl2(aq) + 2e-–> 2Cl-(aq)
MnO4 -(aq) + 8H+(aq) + 5e-–> Mn2+(aq) + 4H2O(l)
S2O82-(aq) + 2e-–> 2SO42-(aq)

Reduktan

Zn(s) –> Zn2+(aq) + 2e-
H2(g) –> 2H+(aq) + 2e-
H2S(aq) –> 2H+(aq) + S(s) + 2e-
Sn2+(aq) –> Sn4+(aq) + 2e-
Fe2+(aq) –> Fe3+(aq) + e-
e. Bilangan oksidasi

Besi adalah reduktan yang baik dan besi menjadi Fe2+ atau Fe3+ bergantung kondisi reaksi.

Fe –> Fe2+ +2e-

Fe –> Fe3+ +3e-

Jadi, penting untuk menyatakan dengan jelas jumlah elektron yang diserahkan atau diterima. Untuk keperluan ini, suatu parameter, bilangan oksidasi didefinisikan. Bilangan oksidasi untuk unsur monoatomik adalah muatan atom tersebut. Bilangan oksidasi Fe, Fe2+ dan Fe3+ adalah 0, +2 dan +3.

Untuk memperluas konsep bilangan oksidasi pada molekul poliatomik, penting untuk mengetahui distribusi elektron dalam molekul dengan akurat. Karena hal ini sukar, diputuskan bahwa muatan formal diberikan pada tiap atom dengan menggunakan aturan tertentu, dan bilangan oksidasi didefinisikan berdasarkan muatan formal. Ringkasan definisinya diberikan sebagai berikut.
Definsi bilangan oksidasi

1.bilangan oksidasi unsur (termasuk alotrop) selalu 0.
2.bilangan oksidasi oksigen adalah -2 kecuali dalam peroksida, -1.
3.bilangan oksidasi hidrogen adalah +1 kecuali dalam hidrida logam -1.
4.bilangan oksidasi logam alkali +1 dan logam alkali tanah +2.
5.Untuk ion dan molekul poliatomik, bilangan oksidasi setiap atom didefinisikan sehingga jumlahnya sama dengan muatannya.

Soal:

1. Yang merupakan pasangan sistem dalam kimia adalah?
jawab: reaksi oksidasi-reduksi dan asam basa.
2. Konsep apa saja yang secara perlahan dikembangkan?
jawab: bilangan oksidasi, oksidan (bahan pengoksidasi), reduktan (bahan pereduksi), dan gaya gerak listrik, persamaan Nernst, hukum Faraday tentang induksi elektromegnet dan elektrolisis.
3. Aristoteles Menyatakan bahwa udara adalah?
jawab: unsur dan satu-satunya gas ditolak, mekanisme oksidasi belum dipahami dengan benar.
4. Pembakaran menurut teori flogiston adalah?
jawab: proses pelepasan flogiston dari zat yang terbakar. Asap yang muncul dari kayu terbakar dianggap bukti yang baik teori ini. Massa abu setelah pembakaran lebih ringan dari massa kayu dan ini juga konsisten dengan teori flogiston.
5. Oksidan dalam oksidasi reduksi adalah?
jawab: senyawa yang menerima elektron dari lawannya.

0 komentar:

Posting Komentar