RSS
Welcome to my blog, hope you enjoy reading :)

Senin, 11 Januari 2010

Jenis Limbah Industri

Ridwan F. 09029

Jenis Limbah Industri

Limbah berdasarkan nilai ekonominya dirinci menjadi limbah yang mempunyai nilai ekonomis dan limbah nonekonomis. Limbah yang mempunyai nilai ekonomis yaitu limbah dengan proses lanjut akan memberikan nilai tambah. Misalnya: tetes merupakan limbah pabrik gula.Tetes menjadi bahan baku untuk pabrik alkohol. Ampas tebu dapat dijadikan bahan baku untuk pabrik kertas, sebab ampas tebu melalui proses sulfinasi dapat menghasilkan bubur pulp. Banyak lagi limbah pabrik tertentu yang dapat diolah untuk menghasilkan produk baru dan menciptakan nilai tambah.

Limbah nonekonomis adalah limbah yang diolah dalam proses bentuk apapun tidak akan memberikan nilai tambah, kecuali mempermudah sistem pembuangan. Limbah jenis ini yang sering menjadi persoalan pencemaran dan merusakkan lingkungan; Dilihat dari sumber limbah dapat merupakan hasil sampingan dan juga dapat merupakan semacam “katalisator”.

Karena sesuatu bahan membutuhkan air pada permulaan proses, sedangkan pada akhir proses air ini harus dibuang lagi yang ternyata telah mengandung sejumlah zat berbahaya dan beracun. Di samping itu ada pula sejumlah air terkandung dalam bahan baku harus dikeluarkan bersama buangan lain. Ada limbah yang terkandung dalam bahan dan harus dibuang setelah proses produksi. Tapi ada pula pabrik menghasilkan limbah karena penambahan bahan penolong.

Sesuai dengan sifatnya, limbah digolongkan menjadi 3 bagian,yaitu: limbah cair, limbah gas/asap dan limbah padat.

Ada industri tertentu menghasilkan limbah cair dan limbah padat yang sukar dibedakan. Ada beberapa hal yang sering keliru mengidentifikasi limbah cair, yaitu buangan air yang berasal dari pendinginan. Sebuah pabrik membutuhkan air untuk pendinginan mesin, lalu memanfaatkan air sungai yang sudah tercemar disebabkan oleh sektor lain. Karena kebutuhan air hanya untuk pendinginan dan tidak untuk lain-lain, tidaklah tepat bila air yang sudah tercemar itu dikatakan bersumber dari pabrik tersebut. Pabrik hanya menggunakan air yang sudah air yang sudah tercemar pabrik harus selalu dilakukan pada berbagai tempat dengan waktu berbeda agar sampel yang diteliti benar-benar menunjukkan keadaan sebenarnya.

Limbah gas/asap adalah limbah yang memanfaatkan udara sebagai media. Pabrik mengeluarkan gas, asap, partikel, debu melalui udara, dibantu angin memberikan jangkauan pencemaran yang cukup luas. Gas, asap dan lain-lain berakumulasi/bercampur dengan udara basah mengakibatkan partikel tambah berat dan malam hari turun bersama embun.

Limbah padat adalah limbah yang sesuai dengan sifat benda padat merupakan sampingan hasil proses produksi. Pada beberapa industri tertentu limbah ini sering menjadi masalah baru sebab untuk proses pembuangannya membutuhkan satu pabrik pula. Limbah penduduk kota menjadikan kota menghadapi problema kebersihan. Kadang-kadang bukan hanya sistem pengolahannya menjadi persoalan tapi bermakna, dibuang setelah diolah. Menurut sifat dan bawaan limbah mempunyai karakteristik baik fisika, kimia maupun biologi.

Limbah air memiliki ketiga karakteristik ini, sedangkan limbah gas yang sering dinilai berdasarkan satu karakteristik saja seperti halnya limbah padat. Berbeda dengan limbah padat yang menjadi penilaian adalah karakteristik fisikanya, sedangkan karakteristikkimia dan biologi mendapat penilaian dari sudut akibat. Limbah padat dilihat dari akibat kualitatif sedangkan limbah air dan limbah gas dilihat dari sudut kualitatif maupun kuantitatif.Sifat setiap jenis limbah tergandung dari sumber limbah.

Kualitas Limbah

Ridwan F. 09029

Kualitas Limbah

Kualitas limbah menunjukkan spesifikasi limbah yang diukur dari kandungan pencemar dalam limbah. Kandungan pencemar dalam limbah terdiri dari berbagai parameter. Semakin sedikit parameter dan semakin kecil konsentrasi, menunjukkan peluang pencemar terhadap lingkungan semakin kecil.

Limbah yang diproduksi pabrik berbeda satu dengan yang lain, masing-masing memiliki karakteristik tersendiri pula. Karakteristik ini diketahui berdasarkan parameternya. Apabila limbah masuk ke dalam lingkungan, ada beberapa kemungkinan yang diciptakan. Kemungkinan pertama, lingkungan tidak mendapat pengaruh yang berarti; kedua, ada pengaruh perubahan tapi tidak menyebabkan pencemaran; ketiga, memberi perubahan dan menimbulkan pencemaran.

Ada berbagai alasan untuk mengatakan demikian. Tidak memberi pengaruh terhadap lingkungan karena volume limbah kecil dan parameter pencemar yang terdapat di dalamnya sedikit dengan konsentrasi kecil. Karena itu andaikata masuk pun dalam lingkungan ternyata lingkungan mamp,u menetralisasinya. Kandungan bahan yang terdapat dalam limbah konsentrasinya barangkali dapat diabaikan karena kecilnya. Ada berbagai parameter pencemar yang menimbulkan perubahan kualitas lingkungan namun tidak menimbulkan pencemaran,Artinya : lingkungan itu memberikan toleransi terhadap perubahan serta tidak menimbulkan dampak negatip.

Kualitas limbah dipengaruhi berbagai faktor Yaitu : volume air limbah, kandungan bahan pencemar, frekuensi pembuangan limbah. Penetapan standar kualitas limbah harus dihubungkan dengan kualitas lingkungan.
Kualitas lingkungan dipengaruhi berbagai komponen yang ada dalam lingkungan itu seperti kualitas air, kepadatan penduduk, flora dan fauna, kesuburan tanah, tumbuh-tumbuhan dan lain-lain.

Adanya perubahan konsentrasi limbah menyebabkan terjadinya perubahan
keadaan badan penerima. Semakin lama badan penerima dituangi air limbah, semakin tinggi pula konsentrasi bahan pencemar di dalamnya.

Soal

Pengolahan Limbah Cair

Ridwan F. 09029

Pengolahan Limbah CAir

Industri primer pengolahan hasil hutan merupakan salah satu penyumbang limbah cair yang berbahaya bagi lingkungan. Bagi industri-industri besar, seperti industri pulp dan kertas, teknologi pengolahan limbah cair yang dihasilkannya mungkin sudah memadai, namun tidak demikian bagi industri kecil atau sedang. Namun demikian, mengingat penting dan besarnya dampak yang ditimbulkan limbah cair bagi lingkungan, penting bagi sektor industri kehutanan untuk memahami dasar-dasar teknologi pengolahan limbah cair.
Teknologi pengolahan air limbah adalah kunci dalam memelihara kelestarian lingkungan. Apapun macam teknologi pengolahan air limbah domestik maupunindustri yang dibangun harus dapat dioperasikan dan dipelihara oleh masyarakat setempat. Jadi teknologi pengolahan yang dipilih harus sesuai dengan kemampuan teknologi masyarakat yang bersangkutan. Berbagai teknik pengolahan air buangan untuk menyisihkan bahan polutannya telah dicoba dan dikembangkan selama ini. Teknik-teknik pengolahan air buanganyang telah dikembangkan tersebut secara umum terbagi menjadi 3 metode pengolahan:
1. pengolahan secara fisika
2. pengolahan secara kimia
3. pengolahan secara biologi
Untuk suatu jenis air buangan tertentu, ketiga metode pengolahan tersebut dapat diaplikasikan secara sendiri-sendiri atau secara kombinasi.
Pengolahan Secara Fisika
Pada umumnya, sebelum dilakukan pengolahan lanjutan terhadap air buangan, diinginkan agar bahan-bahan tersuspensi berukuran besar dan yang mudah mengendap atau bahan-bahan yang terapung disisihkan terlebih dahulu. Penyaringan (screening) merupakan cara yang efisien dan murah untuk menyisihkan bahan tersuspensi yang berukuran besar. Bahan tersuspensi yang mudah mengendap dapat disisihkan secara mudah dengan proses pengendapan. Parameter desain yang utama untuk proses pengendapan ini adalah kecepatan mengendap partikel dan waktu detensi hidrolis di dalam bak pengendap.
Proses flotasi banyak digunakan untuk menyisihkan bahan-bahan yang mengapung seperti minyak dan lemak agar tidak mengganggu proses pengolahan berikutnya. Flotasi juga dapat digunakan sebagai cara penyisihan bahan-bahan tersuspensi (clarification) atau pemekatan lumpur endapan (sludge thickening) dengan memberikan aliran udara ke atas (air flotation).
Proses filtrasi di dalam pengolahan air buangan, biasanya dilakukan untuk mendahului proses adsorbsi atau proses reverse osmosis-nya, akan dilaksanakan untuk menyisihkan sebanyak mungkin partikel tersuspensi dari dalam air agar tidak mengganggu proses adsorbsi atau menyumbat membranyang dipergunakan dalam proses osmosa.
Proses adsorbsi, biasanya dengan karbon aktif, dilakukan untuk menyisihkan senyawa aromatik (misalnya: fenol) dan senyawa organik terlarut lainnya, terutama jika diinginkan untuk menggunakan kembali air buangan tersebut.Teknologi membran (reverse osmosis) biasanya diaplikasikan untuk unit-unit pengolahan kecil, terutama jika pengolahan ditujukan untuk menggunakan kembali airyang diolah. Biaya instalasi dan operasinya sangat mahal.
Pengolahan Secara Kimia
Pengolahan air buangan secara kimia biasanya dilakukan untuk menghilangkan partikel-partikel yang tidak mudah mengendap (koloid), logam-logam berat, senyawa fosfor, dan zat organik beracun; dengan membubuhkan bahan kimia tertentuyang diperlukan. Penyisihan bahan-bahan tersebut pada prinsipnya berlangsung melalui perubahan sifat bahan-bahan tersebut, yaitu dari tak dapat diendapkan menjadi mudah diendapkan (flokulasi-koagulasi), baik dengan atau tanpa reaksi oksidasi-reduksi, dan juga berlangsung sebagai hasil reaksi oksidasi.
Pengendapan bahan tersuspensi yang tak mudah larut dilakukan dengan membubuhkan elektrolit yang mempunyai muatan yang berlawanan dengan muatan koloidnya agar terjadi netralisasi muatan koloid tersebut, sehingga akhirnya dapat diendapkan. Penyisihan logam berat dan senyawa fosfor dilakukan dengan membubuhkan larutan alkali (air kapur misalnya) sehingga terbentuk endapan hidroksida logam-logam tersebut atau endapan hidroksiapatit. Endapan logam tersebut akan lebih stabil jika pH air > 10,5 dan untuk hidroksiapatit pada pH > 9,5. Khusus untuk krom heksavalen, sebelum diendapkan sebagai krom hidroksida [Cr(OH)3], terlebih dahulu direduksi menjadi krom trivalent dengan membubuhkan reduktor (FeSO4, SO2, atau Na2S2O5).

Soal

1. Sebutkan Teknik pengolahan air?

jawab : 1. pengolahan secara fisika,2.pengolahan secara kimia 3. pengolahan secara biologi
2.

Limbah Cair

Ridwan F. 09029

Limbah Cair

Limbah cair bersumber dari pabrik yang biasanya banyak menggunakan air dalam sistem prosesnya. Di samping itu ada pula bahan baku mengandung air sehingga dalam proses pengolahannya air harus dibuang. Air terikut dalam proses pengolahan kemudian dibuang misalnya ketika dipergunakan untuk pencuci suatu bahan sebelum diproses lanjut.

Air ditambah bahan kimia tertentu kemudian di-proses dan setelah itu dibuang, semua jenis perlakuan ini mengakibatkan buangan air. Pada beberapa pabrik tertentu, misalnya pabrik pengolahan kawat, seng, besi baja – sebagian besar air dipergunakan untuk pendinginan mesin ataupun dapur pengecoran. Air ini dipompa dari sumbernya lalu dilewatkan pada bagian-bagian yang membutuhkan pendinginan, kemudian dibuang.

Oleh sebab itu pada saluran pabrik terlihat air mengalir dalam volume yang cukup besar. Air ketel akan dibuang pada waktu-waktu tertentu setelah melalui pemeriksaan laboratorium, sebab air ini tidak memenuhi syarat lagi sebagai air ketel dan karenanya harus dibuang. Bersamaan dengan itu dibutuhkan pula sejumlah air untuk mencuci bagian dalam ketel air pencuci ini juga harus dibuang.

Pencucian lantai pabrik setiap hari untuk beberapa pabrik tertentu membutuhkan air dalam jumlah banyak. Pabrik pengalengan ikan membutuhkan air pencuci dalam jumlah yang relatif harus banyak, Jumlah air terus menerus diperlukan mencuci peralatan, lantai dan lain-lain, karat perlu dicuci sebelum masuk pencincangan dan pada saat dicincang air terus-menerus mengalir untuk menghilangkan pasir abu yang terbawa.

Air dari pabrik membawa sejumlah padatan dan partikel baik yang larut maupun mengendap. Bahan ini ada yang kasar dan halus. Kerap kali air dari pabrik berwarna keruh dan temperaturnya tinggi. Air yang mengandung senyawa kimia beracun dan berbahaya mempunyai sifat tersendiri. Air limbah yang telah tercemar memberikan 577 ciri yang dapat diidentifikasi secara visual dapat diketahui dari kekeruhan, warna air, rasa, bau yang ditimbulkan dan indikasi lainnya.

Sedangkan identifikasi secara laboratorium, ditandai dengan perubahan sifat kimia air di mana air telah mengandung bahan kimia yang beracun dan berbahaya dalam konsentrasi yang melebihi batas dianjurkan. Jenis industri menghasilkan limbah cair di antaranya adalah industri-industri pulp dan rayon, pengolahan crumb rubber, minyak kelapa sawit, baja dan besi, minyak goreng, kertas, tekstil, kaustiksoda, elektro plating, plywood, tepung tapioka, pengalengan, pencelupan dan pewarnaan, daging dan lain-lain.

Jumlah limbah yang dikeluarkan masing-masing industri ini tergantung pada banyak produksi yang dihasilkan, serta jenis produksi. Industri pulp dan rayon menghasilkan limbah air sebanyak 30 m3 setiap ton pulp yang diproduksi. Untuk industri ikan dan makanan laut limbah air berkisar antara 79 m3 sampai dengan 500 m3 per hari; industri pengolahan crumb rubber limbah air antara 100 m3 s/d 2000 m3 per hari, industri pengolahan kelapa sawit mempunyai limbah air: rata-rata 120 m3 per hari skala menengah.

• Pertanyaan dan jawaban mengenai Limbah Cair

1. Apakah yang menjadi sumber dari limbah cair?
Jawab : Limbah cair bersumber dari pabrik yang biasanya banyak menggunakan air dalam sistem prosesnya. Di samping itu ada pula bahan baku mengandung air sehingga dalam proses pengolahannya air harus dibuang. Air terikut dalam proses pengolahan kemudian dibuang misalnya ketika dipergunakan untuk pencuci suatu bahan sebelum diproses lanjut.

2. Apakah yang menunjukan kalau air limbah sudah tercemar?
Jawab : Air limbah yang telah tercemar memberikan 577 ciri yang dapat diidentifikasi secara visual dapat diketahui dari kekeruhan, warna air, rasa, bau yang ditimbulkan dan indikasi lainnya.

3. Bagaimana cara mengindentifikasikan air limbah yang sudah tercemar secara laboratoriium?
Jawab : Jika identifikasi secara laboratorium, ditandai dengan perubahan sifat kimia air di mana air telah mengandung bahan kimia yang beracun dan berbahaya dalam konsentrasi yang melebihi batas dianjurkan.

4. Industri apa saja yang menghasilkan limbah cair?
Jawab : Jenis industri menghasilkan limbah cair di antaranya adalah industri-industri pulp dan rayon, pengolahan crumb rubber, minyak kelapa sawit, baja dan besi, minyak goreng, kertas, tekstil, kaustiksoda, elektro plating, plywood, tepung tapioka, pengalengan, pencelupan dan pewarnaan, daging dan lain-lain.

5. Berikan contoh jumlah limbah yang dikeluarkan salah satu jenis industri!
Jawab : Industri ikan dan makanan laut menghasilkan limbah air berkisar antara 79 m3 sampai dengan 500 m3 per hari

Sabtu, 09 Januari 2010

Dampak Pencemaran Terhadap Lingkungan

Mardianto 09028tiumb@gmail.com

Dampak Pencemaran Terhadap Lingkungan

Pencemaran lingkungan berakibat terhadap kesehatan manusia,tata kehidupan, pertumbuhan flora dan fauna yang berada dalam jangkauan pencemaran. Gejala pencemaran dapat terlihat pada jangka waktu singkat maupun panjang, yaitu pada tingkah laku dan pertumbuhan. Pencemaran dalam waktu relatif singkat, terjadi seminggu sampai dengan setahun sedangkan pencemaran dalam jangka panjang terjadi setelah masa 20 tahun atau lebih.
Gejala pencemaran yang terjadi dalam waktu singkat dapat diatasi dengan melihat sumber pencemaran lalu mengendalikannya. Tanda-tanda pencemaran ini gampang terlihat pada komponen lingkungan yang terkena pencemaran. Berbeda halnya dengan pencemaran yang terjadi dalam waktu yang cukup lama. Bahan pencemar sedikit demi sedikit berakumulasi.
Dampak pencemaran semula tidak begitu kelihatan. Namun setelah menjalani waktu yang relatif panjang dampak pencemaran kelihatan nyata dengan berbagai akibat yang ditimbulkan. Unsur-unsur lingkungan,mengalami perubahan kehidupan habitat. Tanaman yang semula hidup cukup subur menjadi gersang dan digantikan dengan tanaman lain. Jenis binatang tertentu yang semula berkembang secara wajar beberapa tahun kemudian menjadi langka, karena mati atau mencari tempat lain.
Kondisi kesehatan manusia juga menunjukkan perubahan; misalnya, timbul penyakit baru yang sebelumnya tidak ada.Kondisi air, mikroorganisme, unsur hara dan nilai estetika mengalami perubahan yang cukup menyedihkan.
Bahan pencemar yang terdapat dalam limbah industri ternyata telah memberikan dampak serius mengancam satu atau lebih unsur lingkungan: Jangkauan pencemar dalam jangka pendek maupun panjang tergantung pada sifat limbah,jenis, volume limbah, frekuensinya dan lamanya limbah berperan.

Sistematika Identifikasi Pencemar Pada Pabrik

Mardianto 09028tiumb@gmail.com

Sistimatika Identifikasi Pencemar Pada Pabrik

Pengadaan : Bahan baku diangkut dari sumbemya menuju pabrik,Untuk hal tersebut perlu diketahui sifat bahan baku, bagaimana cara pengambilannya, di mana diambil, melalui apa diangkut dan bagaimana cara mengangkut terbuka atau tertutup merupakan keadaan yang perlu dikaji secara mendalam.
misalnya : sumber pengambilan bahan baku berdekatan dengan sumber mata air yang mengakibatkan konflik kepentingan. Kemudian pepyimpanan
bahan baku di mana dilakukan dan selama penyimpanan berlangsung harus diketahui sifat-sifatnya: mudah busuk, mudah berkarat dan lain-lain.
Praproses : Di antara bahan baku memerlukan proses pendahuluan sebelum dilakukan pengolahan. Bahan baku kayu untuk plywood perlu dipotong-potong dahulu, lalu dicuci, Pencucian memerlukan banyak air dan menimbulkan Lumpur.
Bahan baku ubi kayu mendapat perlakuan pendahuluan. Banyak bahan baku yang membutuhkan pencucian, pencampuran dengan bahan baku kimia, kemudian disimpan beberapa lama sampai pada waktunya diproses.
Proses : Pada waktu proses berlangsung perlu diteliti bagian yang banyak menggunakan air, menghasilkan bahan buangan antara bocoran dan jenis mesin yang dipergunakan. Dalam hal ini perlu dilihat bagian mana yang potensial menciptakan limbah dan penghasil limbah. Kemudian limbah ini memerlukan daur ulang.
Kalau masih bernilai ekonomis maka limbah tadi dikembalikan untuk memperoleh bahan yang masih bernilai ekonomi. Limbah yang tidak mempunyai nilai ekonomis, diolah sampai memenuhi syarat buangan, baru selanjutnya dibuang.
Produk : Produk suatu pabrik secara rinci dapat diklasifikasikan menjadi produk utama, produk sampingan, produk antara dan buangan. Produk sampingan dan antara memerlukan pengolahan lanjut, sedangkan buangan harus segera ditangani. Buangan akhir ini juga perlu diteliti apakah mempunyai nilai ekonomi atau tidak.
Bila masih terdapat nilai ekonomis maka limbah didaur ulang,sedangkan bila tidak mempunyai nilai ekonomis, limbah tersebut dibuang setelah memenuhi syarat buangan, Perlu pula diteliti tingkat ketrampilan dan kesadaran pimpinan perusahaan dan karyawan dalam menjaga kelestarian lingkungan.
Terjadinya penggunaan air yang berlebihan, tercecernya bahan dalam pabrik, timbulnya limpahan air yang seharusnya dapat dihindari, terdapatnya bocoran air yang seharusnya tidak perlu dan masalah lain yang serupa, menunjukkan bahwa perusahaan kurang tanggap terhadap lingkungan atau keterampilan mereka terbatas dalam menjalankan teknik produksi.

Kualitas lingkungan pada suatu periode dan lokasi tertentu perlu diketahui dalam kaitannya dengan perencanaan proyek industri. Setiap industri yang akan berdiri pada lokasi tersebut harus mengetahui kondisi lingkungan sehingga kehadiran pabrik tidak menyebabkan rusaknya lingkungan. Monitoring terhadap pengaruh limbah pabrik dapat dilakukan setiap saat sampai kualitas lingkungan mengalami perubahan dan langkah yang dilaksanakan untuk menjaga kelestarian lingkungan.
Daya dukung lingkungan juga belum ditetapkan. Hal ini perlu dibuat dalam rangka menetapkan standar kualitas buangan. Kualitas yang ditetapkan seharusnya merupakan indikasi bahwa dalam kondisi tersebut lingkungan masih mampu menerima. Artinya dengan kualitas limbah tersebut kualitas lingkungan tidak mengalami perubahan.
Hubungan antara kualitas dan daya dukung lingkungan serta kualitas limbah merupakan hubungan yang saling ketergantungan dan perlu distandarkan.

Daya Dukung Lingkungan

Mardianto 09028tiumb@gmail.com

Daya Dukung Lingkungan

Lingkungan secara alami memiliki kemampuan untuk memulihkan keadaannya, Pemulihan keadaan ini merupakan suatu prinsip bahwa sesungguhnya lingkungan itu senantiasa arif menjaga keseimbangannya.

Sepanjang belum ada gangguan “paksa” maka apapun yang terjadi, lingkungan itu sendiri tetap bereaksi secara seimbang”. Perlu ditetapkan daya dukung lingkungan untuk mengetahui kemampuan lingkungan menetralisasi parameter pencemar dalam rangka pemulihan kondisi lingkungan seperti semula.

Apabila bahan pencemar berakumulasi terus menerus dalam suatu lingkungan, sehingga lingkungan tidak punya kemampuan alami untuk menetralisasinya yang mengakibatkan perubahan kualitas. Pokok permasalahannya adalah sejauh mana perubahan ini diperkenankan.

Tanaman tertentu menjadi rusak dengan adanya asap dari suatu pabrik, tapi tidak untuk sebagian tanaman lainnya.

Contoh :
Dengan buangan air pada suatu sungai mengakibatkan peternakan ikan mas tidak baik pertumbuhannya, tapi cukup baik untuk ikan lele dan ikan gabus.

Berarti daya dukung lingkungan untuk kondisi kehidupan ikan emas berbeda dengan daya dukung lingkungan untuk kondisi kehidupan ikan lelel dan gabus. Kenapa demikian, tidak lain karena parameter yang terdapat dalam air tidak dapat dinetralisasi lingkungan untuk kehidupan ikan emas.

Ada saatnya makhluk tertentu dalam lingkungan punya kemampuan yang luar biasa beradaptasi dengan lingkungan lain, tapi ada kalanya menjadi pasif terhadap faktor luar. Jadi faktor daya dukung tergantung pada parameter pencemar dan makhluk yang ada dalam lingkungan.

Beberapa Istilah Konservasi Sumber Daya Alam dan Lingkungan Hidup:

Lingkungan Hidup adalah kesatuan ruang dengan semua benda, daya, keadaan, dan makhluk hidup, termasuk manusia dan perilakunya, yang mempengaruhi kelang-sungan perikehidupan dan kesejahteraan manusia serta makhluk hidup lain;

Pengelolaan Lingkungan Hidup adalah upaya terpadu untuk melestarikan fungsi lingkungan hidup yang meliputi kebijaksanaan penataan, pemanfaatan, pengembangan, pemeliharaan, pemulihan, pengawasan, dan pengendalian lingkungan hidup

Pembangunan Berkelanjutan yang Berwa-wasan Lingkungan Hidup adalah upaya sadar dan terencana, yang memadukan lingkungan hidup, termasuk sumber daya, ke dalam proses pembangunan untuk menjamin kemampuan, kesejahteraan, dan mutu hidup generasi masa kini dan generasi masa depan.

Ekosistem adalah tatanan unsure lingkungan hidup yang merupakan kesatuan utuk menyeluruh dan saling mempengaruhi dalam membentuk keseimbangan, stabilitas, dan produktivitas lingkungan hidup.

Pelestarian Fungsi Lingkungan Hidup adalah rangkaian untuk memelihara kelang-sungan daya dukung dan daya tampung lingkungan hidup

Daya Dukung Lingkungan Hidup adalah kemampuan lingkungan hidup untuk mendu-kung perikehidupan manusia dan makhluk hidup lainnya.

Pelestarian Daya Dukung Lingkungan Hidup adalah rangkaian upaya untuk melindungi kemampuan lingkungan hidup terhadap tekanan perubahan dan/atau dampak negatif yang ditimbulkan oleh suatu kegiatan agar tetap mampu mendukung perikehidupan manusia dan makhluk hidup lain.

Daya Tampung Lingkungan Hidup adalah kemampuan lingkungan hidup untuk menyerap zat, energi, dan atau komponen lain yang masuk atau dimasukkan ke dalamnya.

Pelestarian Daya Tampung Lingkungan Hidup adalah rangkaian upaya untuk melindungi kemampuan lingkungan hidup untuk menyerap zat, energi, dan/atau komponen lain yang dibuang ke dalamnya.

Sumber Daya adalah unsur lingkungan hidup yang terdiri atas sumber daya manusia, sumber daya alam, baik hayati maupun non hayati, dan sumber daya buatan.

Baku Mutu Lingkungan Hidup adalah ukuran batas atau kadar makhluk hidup, zat, energi, atau komponen yang ada dan/atau unsur pencemar yang ditenggang keberadaannya dalam suatu sumber daya tertentu sebagai unsure lingkungan hidup,

Pencemaran Lingkungan Hidup adalah masuknya atau dimasukkannya makhluk hidup, zat, energi, dan/atau komponen lain ke dalam lingkungan hidup oleh kegiatan manusia sehingga kualitasnya turun sampai ke tingkat tertentu yang menyebabkan ling-kungan hidup tidak bisa berfungsi lkagi dalam menunjang pembangunan berkelanjutan,

Dampak Lingkungan Hidup adalah pengaruh perubahan pada lingkungan hidup yang diakibatkan oleh suatu usaha dan/atau kegiatan

Analisis Mengenai Dampak Lingkungan Hidup adalah kajian mengenai dampak besar dan penting suatu usaha dan/atau kegiatan yang direncanakan pada lingkungan hidup yang diperlukan bagi proses pengambilan keputusan tentang penyelenggaraan usaha dan/atau kegiatan.

Sumber: UU.No. 23 Tahun 1997 tentang Pengelolaan Lingkungan Hidup.

Kualitas Lingkungan

Mardianto 09028tiumb@gmail.com

Kualitas Lingkungan

Pengaruh pencemar lingkungan diukur dengan perubahan kualitas lingkungan, Kualitas lingkungan ditetapkan pada suatu periode dan tempat tertentu. Kualitas adalah suatu numerik yang ditetapkan berdasarkan situasi dan kondisi tertentu dengan mempertimbangkan berbagai faktor yang mempengaruhi lingkungan. Kualitas lingkungan mengalami perubahan pada suatu periode tertentu sesuai dengan interaksi komponen lingkungan.
Dengan adanya kegiatan baru dalam lingkungan timbul interaksi baru antara satu kegiatan atau lebih dengan satu atau lebih komponen lingkungan,Interaksi tersebut menyebabkan saling pengaruh mempengaruhi dan pada gilirannya akan menimbulkan dampak positip maupun negatip.
Masuknya limbah pada lingkungan, katakanlah air buangan pabrik kelapa sawit, masuk pada badan air tentu akan menimbulkan perubahan sekecil apa sekalipun. Perubahan ini dapat membuat air menjadi keruh, berwarna, berbau dan sebagainya atau sebaliknya tidak menimbulkan pengaruh yang berarti.
Bila limbah tidak memberikan perubahan kondisi air, berarti badan air masih mampu menetralisasinya. Artinya kualitas air belum mengalami perubahan yang berarti dan dengan demikian makhluk-makhluk dan tanam-tanaman dalam air hidup “tenteram” biasa.
Perlunya penetapan kualitas lingkungan adalah salah satu upaya untuk memantau kondisi lingkungan dan perubahannya akibat suatu kegiatan baru. Nilai kualitas ini berkaitan erat dengan kualitas limbah, Kualitas lingkungan diukur dari berbagai komponen yang ada dalam lingkungan, termasuk toleransinya.

Sintesa Bahan Anorganik Industri

Mardianto 09028tiumb@gmail.com

Sintesa Bahan Anorganik Industri

Karena struktur senyawa anorganik biasanya lebih sederhana daripada senyawa organik, sintesis senyawa anorganik telah berkembang dengan cukup pesat dari awal kimia modern. Banyak pengusaha dan inventor secara ekstensif mengeksplorasi sintesis berbagai senyawa yang berguna. Dengan kata lain sintesis senyawa anorganik bermanfaat besar secara aktif dilakukan sebelum strukturnya atau mekanisme reaksinya diklarifikasi. Beberapa contoh khas diberikan di bawah ini.

a. Natrium karbonat Na2CO3
Sepanjang sejarah industri kimia, persediaan natrium karbonat Na2CO3, soda, merupakan isu penting. Soda adalah bahan dasar penting bukan hanya untuk keperluan sehari-hari (seperti sabun) tetapi juga untuk produk industri yang lebih canggih (seperti gelas).

Di waktu lampau soda didapatkan dari sumber alami, dan kalium karbonat K2CO3, yang juga digunakan dalam sabun, didapatkan dalam bentuk abu kayu. Setelah revolusi industri, kebutuhan sabun meningkat dan akibatnya metoda sintesis baru dengan bersemangat dicari. Waktu itu telah dikenali bahwa soda dan garam (NaCl) mengandung unsur yang sama, natrium, dan penemuan ini mengakibatkan banyak orang berusaha membuat soda dari garam. Di awal abad 19, suatu proses baru dikembangkan: natrium sulfat yang merupakan produk samping produksi asam khlorida (yang digunakan untuk serbuk pengelantang, bleaching), batu bara dan besi dinyalakan. Namun, hasilnya, rendah dan tidak cocok untuk produksi skala besar .

Inventor Perancis Nicolas Leblanc (1742-1806) mendaftar suatu kontes yang diselenggarakan oleh Académie des Sciences, untuk menghasilkan secara efektif soda dari garam. Esensi dari prosesmua adalah penggunaan marmer (kalsium karbonat) sebagai ganti besi.


Na2SO4 + 2C –> Na2S + 2CO2 (11.1)
Na2S + CaCO3 –> Na2CO3 + CaS (11.2)
2NaCl + H2SO4 –> Na2SO4 + 2HCl (11.3)



Proses Leblanc dapat menghasilkan soda dengan kualitas lebih baik daripada metoda sebelumnya. Namun, proses ini menghasilkan sejumlah produk samping seperti asam sulfat, asam khlorida, kalsium khlorida, kalsium sulfida dan hidrogen sulfida. Bahkan waktu itu pun, pabrik menjadi target kritik masyarakat. Peningkatan kualitas proses Leblanc sangat diperlukan khususnya dari sudut pandang penggunaan ulang produk sampingnya, yang jelas akan menurunkan ongkos produksi.

Satu abad setelah usulan proses Leblanc, inventor Belgia Ernest Solvay (1838-1922) mengusulkan proses Solvay (proses soda-amonia), yang lebih maju dari aspek kimia dan teknologi. Telah diketahui sejak awal abad 19 bahwa soda dapat dihasilkan dari garam denagn amonium karbonat (NH4)2CO3. Solvay yang berpengalaman dengan mesin dan dapat mendesain proses produksi tidak hanya dari sudut pandang kimia tetapi juga dari sudut pandang teknologi kimia. Dia berhasil mengindustrialisasikan prosesnya di tahun 1863.

Keuntungan terbesar proses Solvay adalah penggunaan reaktor tanur bukannya reaktor tangki. Air garam yang melarutkan amonia dituangkan dari puncak tanur dan karbondioksida ditiupkan keda lam tanur dari dasar sehingga produknya akan secara kontinyu diambil tanpa harus menghentikan reaksi. Sistem Solvay menurunkan ongkos secara signifikan, dan akibatnya menggantikan proses Leblanc.


Reaksi utama
NaCl + NH3 + CO2 + H2O –> NaHCO3 + NH4Cl (11.4)
2NaHCO3 –> Na2CO3 + CO2 + H2O (11.5)
Sirkulasi amonia
2NH4Cl + CaO –> 2NH3 + CaCl2 + H2O (11.6)
Pembentukan karbon dioksida CO2 dan kalsium oksida CaO
CaCO3 –> CaO+CO2 (11.7)

Satu-satunya produk samping proses Solvay adalah kalsium khlorida, dan amonia dan karbondioksida disirkulasi dan digunakan ulang. Dalam produksi soda dari garam, poin penting adalah pembuangan khlorin. Dalam proses Leblanc, khlorin dibuang sebagai gas asam khlorida, namun di proses Solvay, khlorin dibuang sebagai padatan tak berbahaya, kalsium khlorida. Karena keefektifan dan keefisienan prosesnya, proses Solvay dianggap sebagai contoh proses industri kimia.

b. Asam sulfat
Sejak akhir pertengahan abad 16, kimiawan Jerman Andreas Libavius (1540?-1616) memaparkan proses untuk mendapatkan asam sulfat H2SO4 dengan membakar belerang dalam udara basah.

S + O2 –> SO2 (11.8)
2SO2+O2 –> 2SO3 (11.9)
Glauber, insinyur kimia pertama, menemukan di pertengahan abad 17 proses untuk mendapatkan asam khlorida dengan memanaskan garam dan asam sulfat. Asam khlorida yang didapatkannya memiliki konsentrasi yang lebih tinggo daripada yang didapatkan dalam proses sebelumnya.

2NaCl+H2SO4 –> Na2SO4+2HCl (11.10)

Reaksi yang dibahas di buku teks sekolah menengah itu digunakan di sini. Glauber mengiklankan natrium sulfat sebagai obat dengan efek yang menakjubkan dan mendapatkan banyak keuntungan dari penjualan garam ini.

Proses yang lebih praktis untuk menghasilkan asam sulfat dikenalkan yakni dengan cara memanaskan belerang dengan kalium nitrat KNO3. Awalnya pembakaran dilakukan di wadah gelas besar yang mengandung air.

Asam sulfat yang terbentuk terlarut dalam air. Walaupun proses kedua (SO2 –>SO3) lambat dan endotermik, dalam proses ini oksida nitrogen nampaknya berfungsi sebagai katalis yang mempromosikan reaksi ini.

Dengan meningkatnya kebutuhan asam sulfat khususnya dengan berkembangnya proses Leblanc yang membutuhkan asam sulfat dalam kuantitas besar, alat baru, proses kamar timbal yang menggunakan ruangan yang dilapisi timbal sebagai ganti wadah gelas dikenalkan yang membuat produksi skala besar dimungkinkan. Produksi asam sulfat skala besar otomatis berarti pembuangan nitrogen oksida yang besar juga. Sedemikian besar sehingga pada waktu itupun bahaya ke lingkungannya tidak dapat diabaikan.

Berbagai perbaikan proses dilakukan dengan menggunakan tanur Gay-Lussac dan Glover. Yang terakhir ini digunakan dengan luas karena nitrogen oksida dapat digunakan ulang dan rendemen n itratnya lebih besar.

Ide penggunaan katalis dalam produksi asam sulfat, atau secara khusus dalam oksidasi belearng dioksida telah dikenali sejak kira-kira tahun 1830. Katalis platina terbuki efektif tetapi sangat mahal sehingga tidak digunakan secara meluas. Setelah setengah abad kemudian, ketika kebutuhan asam sulfat meningkat banyak, ide penggunaan katalis muncul kembali. Setelah masalah keracunan katalis diselesaikan, proses penggunaan katalis platina, yakni proses kontak, menjadi proses utama dalam produksi asam sulfat. Proses kontak masih digunakan sampai sekarang walaupun katalisnya bukan platina, tetapi campuran termasuk vanadium oksida V2O5.

c. Amonia dan asam nitrat
Nitrat (garam dari asam nitrat) sejak zaman dulu dibutuhkan banyak sebagai bahan baku serbuk mesiu. Namun, persediaannya terbatas, dan kalium nitrat yang ada secara alami adalah bahan baku utama yang tersedia. Di abad 19 ketika skala perang menjadi besar, kebutuhan nitrat menjadi membesar, dan kalium nitrat yang ada secara alami tidak dapat memenuhi permintaan.

Selain itu, nitrat diperlukan sebagai bahan baku pupuk buatan. Di akhir pertengahan abad 19 kimiawan Jerman Justus von Liebig (1803-1873) membuktikan kefektifan dan pentingnya pupuk buatan. Masalah yang menghalangi pemakaian bear-besaran pupuk buatan adalah harganya yang tinggi, khususnya pupuk nitrogen.

Di akhir abad 19, fisikawan Inggris William Crookes (1832-1919) meramalkan peningkatan jumlah makanan yang diproduksi tidak dapat mengejar peningkatan populasi dunia dan dunia akan berakhir menjadi katastropi.
Situasi semacam memicu ilmuwan untuk menyelidiki fiksasi nitrogen artifisial atau menemukan proses untuk mengubah nitrogen yang tidak terbatas persediaanya di udara menjadi senyawa yang dapat digunakan. Jelas diperlukan cara untuk melakukan fiksasi dalam skala besar. Jadi, percobaannya harus dimulai di skala laboratorium untuk dapat diperbesar ke skala pabrik.

Fiksasi nitrogen berhasil dilakukan oleh kimiawan Jerman Fritz Haber (1868-1934) dan insinyur kimia Jerman, yang bekerja untuk BASF, Carl Bosch (1874-1940). Persamaan reaksi untuk proses Haber-Bosch sangat sederhana, tetapi secara teknis terdapat berbagai kesukaran. Prosesnya dielaborasi sehingga reaksi eksoterm ini akan berlangsung ke sisi kanan dengan mulus.

N2 + 3H2 –> 2NH3 + 22,1 kkal (11.11)

Dalam praktek, beberapa modifikasi dibuat. Misalnya, rasio molar nitrogen : hidrogen bukan 1:3, tetapi 1:3.3. Kondisi reaksi yang dipilih adalah 300°C pada 500 atm. Hidrogen digunakan berlebih pada tekanan tinggi sehingga kesetimbangannya bergeser ke kanan. Karena reaksinya eksoterm, reaksi ini lebih baik dilakukan pada temperatur yang lebih rendah sesuai dengan azas Le Chatelier. Di pihak lain, laju reaksi akan terlalu rendah pada temperatur rendah. Jadi suhunya dibuat agak tinggi ( yakni, dengan tetap mempertimbangkan agar dekomposisi NH3 tidak terjadi). Katalis yang dibuat dari besi digunakan dengan ekstensif.

Proses Haber-Bosch menjadi terkenal sebagai contoh pertama teori kesetimbangan diaplikasikan dalam produksi. Di satu sisi fiksasi nitrogen dengan proses Haber-Bosch membawa banyak manfaat karena kemudahan mendapat pupuk. Di sisi lain amonia berarti bahan baku mesiu dapayt diperoleh dengan mudah pula.

Proses modern untuk menghasilkan asam nitrat HNO3 adalah okidasi amonia di udara. Dalam proses ini, amonia dicampur dengan udara berlebih, dan campurannya dipanaskan sampai temperatur tinggi dengan katalis platina. Amonia akan diubah menjadi nitrogen oksida NO, yang kemudian dioksidasi lebih lanjut di udara menjadi nitrogen dioksida NO2. Nitrogen dioksida direaksikan dengan air menghasilkan asam nitrat. Metoda ini dikembangkan oleh Ostwald, kimiawan yang banyak memberikan kimia katalis, dan disebut proses Ostwald.

Proses ini diungkapkan dalam persamaan reaksi berikut.

4NH3 + 5 O2 –> 4NO + 6 H2O (11.12)
2NO+O2 –> 2NO2 (11.13)
3NO2+H2O –> 2HNO3+NO (11.14)

Pandangan Baru Tentang Materi

Mardianto 09028tiumb@gmail.com

Pandangan Baru Tentang Materi

Sejak modernisasi kimia di akhir abad 18, kimia selalu dan dengan cepat berkembang. Karena dasar dari perkembangan ini adalah teori atom/molecular, kita dapat menyebut 200 tahun perkembangan ini sebagai era kimia molecular. Dengan terbitnya abad 21, kimia telah meraih sukses dalam meluaskan lingkup kajiannnya. Peran interaksi lemah telah dikenali, dan prosepek baru kimia supramolekular telah terbuka. Di pihak lain, kimia mempunyai peran besar untuk melestarikan lingkungan, dan kita harus mencari cara agar alam dan manusia dapat berdampingan dengan langgeng, yang dalam terminologi modern disebut masyarakat berkelanjutan sustainable societies. Banyak yang kimia dan kimiawab harus lakukan.
a. Deteksi interaksi lemah
Dari kelahiran kimia modern sejak akhir abad 18 sampai akhir abad 20, kimia lebih berbasisikan pada molekul yang terdiri atas atom-atom dan ikatan ionik dan kovalen yang mengikat atom-atom tersebut. Struktur, sifat dan fungsi telah dijelaskan dari sudut pandang molekul. Telah dianggap otomatis, bila orang mengenal molekul, maka sisfat dan fungsinya akan dikenal pula. Kimia yang didasarkan atas asumsi ini mungkin dapat disebut dengan kimia molekular.
Namun, terdapat beberapa kimiawan yang menganggap pandangan seperti itu mungkin terlalu menyederhanakan. Bahkan sejak 1920 an, telah dikenali material yang struktur dan sifatnya tidak dapat dijelaskan dari sudut pandang molekul. Di waktu itu, konsep ikatan hidrogen dengan berhasil telah digunakan untuk menjelaskan penggabungan parsial asam asetat dan air. Ikatan hidrogen tidak dapat dimasukkan dalam lingkup terori valensi yang diformulasikan oleh Kekulé. Walaupun ikatan hidrogen dalam kekuatannya hanya 1/10 ikatan kovalen normal, ikatan ini memungkinkan molekul terikat secara lemah satu sama lain. Dari sudut pandang ini, ikatan hidrogen dapat disebut suatu jenis ikatan kimia.
Konsep lain, gaya antarmolekul atau van der Waals dikenalkan untuk menjelaskan fakta molekul non polar semacam H2 mengkristal pada temperatur yang sangat rendah. Gaya dorong ikatan ion, yakni gaya Coulomb berbanding terbalik dengan kuadrat jarak. Gaya van der Waals berbanding terbalik dengan jarak pangkat enam, dan dengan demikian kekuatannya berbeda.
b. Senyawa klatrat
Bila senyawa hidrokarbon alifatik seperti oktana C8H18 ditambahkan pada larutan urea H2NCONH2, batang-batang kristal yang cantik akan mengendap. Kristal ini terdiri atas urea dan oktana, tetapi perbandingannya tidak bilangan bulat. Lebih lanjut dengan pemanasan yang pelahan, kristalnya akan terdekomposisi menjadi urea dan oktana. Fakta-fakta ini mengindikasikan bahwa kedua komponen tidak terikat dengan ikatan kovalen atau ionik biasa.
Struktur kristalnya (yang pada waktu itu disebut adduct urea) dielusidasi dengan analisis kristalografi sinar-X.. Berdasarkan hasil analisis ini, molekul urea membentuk rantai ikatan hidrogen, dan rantai ini membentuk spiral, yang menyisakan kolom kosong di tengahnya. Molekul-molekul oktana terjebak di dalam kolom kosong ini, dan tetap tinggal dalam ruang ini karena adanya interaksi lemah.
Dalam senyawa seperti ini, ada interaksi lemah yang di luar lingkup ikatan kimia konvensional. Senyawa-senyawa seperti ini disebut dengan senyawa inklusi atau klatrat. Senyawa yang perannya mirip dengan urea dalam contoh tadi disebut inang atau tuan rumah , dan yang mirip perannya dengan oktana disebut tamu. Demikianlah cabang baru kimia, kimia tuan rumah tamu (host guest chemistry) muncul.
Sebelum ditemukan adduct urea, senyawa inklusi yang terdiri atas hidrokuinon (senyawa ini digunakan sebagai reduktor dalam fotografi) sebagai tuan rumah telah menarik perhatian besar. Bedasarkan struktur yang diungkap dari analisis kristalografi sinar-X, tiga molekul hidrokuinon me njadi tuan rumah yang menjebak satu molekul tamu-metanol. Rumus molekul klatrat ini adalah CH3OH•3C6H4(OH)2. Hidrokuinon dapat juga menjebak tamu lain seperti argon.
c. Penemuan eter mahkota
Senyawa klatrat semacam urea dan hidrokuinon sungguh merupakan kejutan bagi kimiawan. Namun, harus diakui bahwa dalam kristal tamu dan tuan rumahnya harus berdekatan. Dalam kasus semacam ini, intetraksi lemah mungkin terjadi, walaupun interaksi semacam ini di luar lingkup ikatan kimia konvensional. Namun, situasinya akan berbeda di larutan
Sekitar tahun 1967, kimiawan Amerika Charles J. Pedersen (1904-1989) mendapatkan eter siklik sebagai produk samping salah satu reaksi yang dia pelajari. Ia mempelajari dengan baik sifat-siaft aneh eter ini. Senyawa ini sukar larut dalam metanol, tetapu menjadi mudah larut bila ia menambahkan garam natrium dalam campurannya. Lebih lanjut, larutan dalam benzen eter ini dapat melarutkan kalium dikromat K2Cr2O7 dan menunjukkan warna ungu yang antik. Ia sangat bingung menjelaskan fenomena-fenomena ini, mengatakan bahwa ion natrium atau kalium nampak masuk dalam rongga di pusta molekul ini (Gambar 14. 1).

(a) eter mahkota dibenzo -18 bebas. (b) eter mahkota dibenzo -18 yang menangkap ion K+.
Dari “Crown Ethers & Cryptands” oleh G. Gokel, Royal Society of Chemistry, 1991
Beberapa tahun kemudian terbukti bahwa ide Pedersen ternyata benar, dan memang, kation terjebak dalam rongga molekulnya. Dia mengusulkan nama senyawa ini eter mahkota karena bentuk molekulnya mirip mahkota, dan usulnya ini diterima masyarakat kimia dunia. Di tahun 1987, bersama dengan kimiawan Amerika lain Donald James Cram (1919-2001) dan kimiawan Perancis Jean-Marie Lehn (1939-), Pedersen dianugerahi hadiah Nobel Kimia.
d. Kimia susunan molekular (molecular assemblies)
Interaksi antara eter mahkota dan kation logam alkali disebut dengan interaksi lemah dari sudut pandang ikatan kimia konvensional. Terbukti kemudian bahwa interaksi seperti ini, yang ada tidak hanya dalam kristal tetapi juga dalam larutan, lebih umum dari yang diharapkan. Produk alam valinomisin, yang dietemukan dalam waktu yang sama, dapat juga digunakan untuk menangkap dan mentransport ion, dan lebih lanjut, membawa kation logam alkali kedalam makhluk hidup melalui membran. Senyawa dengan fungsi semacam itu disebut ionofor. Kemiripan struktur antara valinomisin, suatu produk alam, dan eter mahkota, produk sintetis, sangat nyata walaupun kedua senyawa ini berbeda asalnya (Gambar 14.2).

Gambar 14.2 Ionofor yang dapat menangkap dan mentransport ion.
a) senyawa sintetis eter dibenzo-18- mahkota -6.
(b) senyawa alam: valinomisin (antibiotik)
Paralel dengan penemuan ionofor, suatu gerakan untuk menyatukan kimia dan ilmu hayati, dan kimia anorganik dan ilmu hayati, muncul di pertengahan akhir abad 20. Isyarat penting untuk memahami mekanisme kehidupan adalah mempelajari proses (reaksi) dalam berbagai susunan produk alam yang membentuk kompleks atau membran yang mengikuti aturan tertentu. Isyarat penting lain adalah interaksi lemah antara produk-produk alam, yakni pembentukan sel, reaksi katalitik yang melibatkan kompleks substrat- enzim dan ko-enzim, dan interaksi antara hormon atau obat dan reseptor.
Untuk malacak isyarat tersembunyi ini, kimia organik dan anorganik harus memainkan peran. Cabang baru sains yang tujuannya menyatukan kimia organik dan ilmu hayati ini disebut kimia bioorganik.
Sifat khas zat yang mengatur kehidupan, misalnya enzim, adalah gugus fungsi yang biasanya didiskusikan di kimia organik. Namun, terdapat banyak kasus fungsinya lebih rumit. Da lam beberapa kasus zat ini mengandung unsur transisi di pusat aktifnya, yang kemudian melahirkan perkawinan antara kimia anorganik dan ilmu hayati, dan cabang sains baru, kimia bioanorganik lahir.
Baik kimia bioorganik maupun bioanorganik mencakup tidak hanya molekul konvensional tetapi juga semua jenis susunan yang terbentuk dengan interaksi lemah di antara berbagai spesi kimia (molekul dan ion, dsb). Mungkin dapat dikatakan bahwa kimia bioorganik dan bioanorganik secara khusus membahas susunan ini.
e. Kimia supramolekul
Kini karena peran susunan itu sangat penting, mungkin lebih baik bila kita beri susunan tersebut nama yang tepat.. Lehn mengusulkan nama “supramolekul” dan nama ini secara luas diterima di masyarakat kimia. Jadi kimia yang mempelajari supramolekul disebut dengan kimia supramolekul.
Mungkin orang mengira bahwa supramolekul memiliki keteraturan yang lebih rendah dari molekul konvensioanl karena gaya yang mengikat partikel-partikel konstituen dalam supramolekul adalah interaksi lemah bukannya ikatan kimia yang kuat. Namun, ini justru kekeliruan. Interaksi lemah dalam supramolekul keselektifannya sangat tinggi, dan ini mirip dengan interaksi antara enzim dengan substratnya yang dapat diumpamakan dengan hubungan antara anak kunci dan lubangnya. Interaksi intermolekul ini mungkin sangat tinggi keteraturannya.
Di abad 21 ini diharapkan kimia molekular dan supramolekular akan berkembang secara paralel.. Kimia supramolekul akan menambah dalam tidak hanya pemahaman kita akan makhluk hidup tetapu juga riset kita dalam bidang kimia molekular. Juga harus diakui bahwa semua molekul pasti akan berinteraksi dengan molekul di sekitarnya. Molekul yang terisolasi hanya mungkin ada di ruang kosmik.

Kesetimbangan Dengan Alam

Mardianto 09028tiumb@gmail.com

Kesetimbangan dengan Alam

a. Efek “skala besar” zat
Walaupun sukar untuk meramalkan arah dan lingkup perkembangan kimia abad 21, jelas bahwa kimia di abad 21 harus menjaga kesetimbangan yang baik dengan alam. Lebih lanjut, kimia harus mengembalikan lingkungan yang pada derajat tertentu telah rusak. Kimia dan industri kimia sebelum pertengahan abad 20 dibiarkan berkembang tanpa batasan dan pertanggungjawaban. Kerusakan yang diakibatkan oleh perkembangan itu meluas di mana-mana.

Baru pada pertengahan abad 20 itulah kita menyadari bahwa kita telah kehilangan banyak akibat perkembangan industri kimia yang cepat dan ekstensif. Tetapi orang yang menyadari masalah ini masih sedikit. Lebih-lebih, tanggapan pemerintah dan masyarakat ilmiah tidak juga segera. Namun, untungnya dengan waktu orang menyadari bahwa ada masalah.

Di awal gerakan lingkungan, efek langsung seperti kerusakan lingkungan di dekat pabrik yang menjadi perhatian. Perlu beberapa waktu sebelum orang mengkritisi industrinya.
Indikasi awal dampak kerusakan lingkungan oleh produk tertentu bukan polusi di daerah industri atau perkotaan, tetapi kerusakan alam yang lebih luas yang diisukan oleh ekologis Amerika Rachel Carson (1907-1964). Ia mempublikasikan buku “Silent Spring” (Gambar 14. 3) di tahun 1962 yang kemudian menjadi buku terlarus di berbagai negara. Buku ini dengan jelas memaparkan dampak penggunaan bahan kimia yang berlebihan di pertanian, khususnya bahan kimia yang mengandung khlorin.

Gambar 14.3 Buku “Silent Spring” yang memberi peringatan pada dunia.

Kemudian dampak defolian (zat yang digunakan untk menggugurkan daun) yang digunakan dalam Perang Vietnam oleh tentara Amerika menjadi isu sosial yang serius. Isu yang lebih serius sekarang adalah kerusakan lapisan ozon oleh freon dan efek rumah kaca (pemanasan global) yang disebabkan oleh karbondioksida. Masalah pemanasan global sangat berkait dengan masalah energi. Berapa banyak energi yang dapat dan harusnya kita gunakan adalah masalah serius yang menantang kita.

Ada poin umum dalam masalah-masalah yang didiskusikan di atas. Sebab utama adalah fakta bahwa jumlah zat yang melimpah telah didifusikan ke lingkungan. Sejumlah kecil bahan pertanian, freon atau defolian yang dibuat di laboratorium mungkin tidak akan berakibat serius bila terdifusi ke lingkungan. Kerusakannya akan terlokalisasi. Namun, bila zat ini diproduksi dalam skala raksasa dan didifusikan di seluruh dunia, akan muncul masalah serius. Mungkin dapat kita sebut “efek skala besar” yang disebabkan difusi zat kimia.

Untuk memprediksi “efek skala besar” suatu zat, pengetahuan yang didapatkan dari mempelajari kimia molekular sejumlah kecil zat tidak akan cukup. Sebelum memproduksi dan mendifusikan sejumlah besar zat, orang yang menggunakan dan kimiawan yang membuatnya harus tahu dan mempertimbangkan apa yang akan terjadi bila sejumlah besar zat itu dilepaskan ke lingkungan.

b. Kimia lingkungan
Usaha-usaha untuk melindungi bumi dari kerusakan lebih lanjut melahirkan cabang kimia baru, yakni kimia lingkungan. Apa yang dapat kimia lakukan untuk memperbaiki lingkungan bergantung pada situasinya. Dalam isu kerusakan lapisan ozon, kimia memerankan peran menentukan dari awal. Kimiawanlah yang mendeteksi adanya masalah dan yang mengusulkan metoda untuk memecahkan masalah ini. Sudah sejak tahun 1974, kimiawan Amerika Sherwood Roland (1927-) memprediksikan kemungkinan destruksi lapisan ozon. Kebenarannya dibuktikan tahun 1985, dan isu ini kemudian berpindah dari kimia ke politik. Setelah banyak diskusi dan negosiasi, persetujuan final dicapai di skala dunia, dan diputuskan melarang penggunaan freon.

Gambar 14.4 F. Sherwood Rowlan d (1927-)
Pemenang Nobel Kimia (1995)
Di tahun 1995, hadiah Nobel kimia dianugerhakan ke tiga kimiawan termasuk Rowland yang telah memberikan sumbangan bear pada kimia lingkungan. Merupakan hal penting bahwa kimiawan dalam bidang kimia baru ini diberi hadiah Nobel. Ini juga menunjukkan bahwa dunia mulai mengenal pentingnya kimia lingkungan.
Peran kimia dalam isu energi juga sangat besar. Perlu segera dilakukan reduksi konsumsi bahan bakar fosil untuk menjaga lingkungan dan sumber daya alam. Kimia dapat menyumbangkan banyak hal untuk memecahkan isu energi dengan memproduksi sel surya yang efisien atau dengan mengembangkan kimia C1 yang bertujuan mengubah senyawa satu atom karbon seprti karbon dioksida menjadi bahan bakar, dsb.

Sebagai kesimpulan, peran kimia adalah untuk mengendalikan agar masyarakat berkelanjutan dapat dicapai. Masyarakat berkelanjutan adalah slogan yang indah. Namun, untuk mencapainya bukan hal sederhana. Kita percaya kimia dapat berkontribusi besar untuk merealisasikan masyarakat berkelanjutan itu.